Gender Identification using MFCC for Telephone Applications - A Comparative Study

نویسندگان

  • Jamil Ahmad
  • Mustansar Fiaz
  • Soon-il Kwon
  • Maleerat Sodanil
  • Bay Vo
  • Sung Wook Baik
چکیده

Gender recognition is an essential component of automatic speech recognition and interactive voice response systems. Determining gender of the speaker reduces the computational burden of such systems for any further processing. Typical methods for gender recognition from speech largely depend on features extraction and classification processes. The purpose of this study is to evaluate the performance of various state-of-the-art classification methods along with tuning their parameters for helping selection of the optimal classification methods for gender recognition tasks. Five classification schemes including k-nearest neighbor, naïve Bayes, multilayer perceptron, random forest, and support vector machine are comprehensively evaluated for determination of gender from telephonic speech using the Mel-frequency cepstral coefficients. Different experiments were performed to determine the effects of training data sizes, length of the speech streams, and parameter tuning on classification performance. Results suggest that SVM is the best classifier among all the five schemes for gender recognition. Keywords— feature vector, gender recognition, mel-frequency cepstal coefficients, support vector machine

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Gender Identification Using Svm with Combination of Mfcc

Gender is an important and most diffrentiative characteristic of a speech. Gender information can also be used to improve the performance of speech and speaker recognition systems. Automatic gender classification is a technique that aims to determine the sex of the speaker through speech signal analysis. However with the increase in biometric security application, practical application of gende...

متن کامل

Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter ban...

متن کامل

Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors...

متن کامل

A Comparative Study for Identification of Sex of the Speaker With Reference to Bodo Vowels

This work presents an application of Fundamental Frequency (Pitch), Linear Predictive Cepstral Coefficient (LPCC) and Mel Frequency Cepstral Coefficient (MFCC) in identification of sex of the speaker in speech recognition research. The aim of this article is to compare the performance of these three methods for identification of sex of the speakers. A successful speech recognition system can he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.01577  شماره 

صفحات  -

تاریخ انتشار 2015